هوش تجاری (Business Intelligence)

هوش تجاری (Business Intelligence)

به اشتراک بگذاریم برای یادگیری، یاد بگیریم برای به اشتراک گذاری
هوش تجاری (Business Intelligence)

هوش تجاری (Business Intelligence)

به اشتراک بگذاریم برای یادگیری، یاد بگیریم برای به اشتراک گذاری

انتخاب یک راهکار مناسبِ هوش تجاری بر اساس نیاز کسب و کار- بخش سوم

 بسیاری از راه‌کارهای هوش تجاری موجود در بازار چندین قابلیت را پشتیبانی می‌کنند. لیست مورد بررسی شامل ویژگی‌های پایه می‌باشد که بخش جدایی ناپذیر از تمام راه‌کارهای تجزیه و تحلیل است و همچنین شامل ویژگی‌های پیشرفته‌ای است که بندرت در راه‌کارهای موجود پیاده سازی می‌شوند. ویژگی‌های پیشرفته مواردی هستند که انتظار می‌رود به زودی عملیاتی شوند.

برای این تحقیق، ما تجزیه و تحلیل کاملی از راه‌کارهای BI در بازار و ویژگی‌های آن‌ها در برابر ویژگی‌های انتخاب شده انجام دادیم. سپس لیست ابزارهای BI موجود در بازار را به تعداد 20 ابزار کاهش دادیم. روش مورد استفاده، تجزیه و تحلیل ساختار یافته و مقایسه راه‌کارهای BI را فراهم می‌کند که امیدواریم بینش بهتری در مورد وضعیت فعلی بازار فراهم و به انتخاب راه‌کارهای هوش تجاری کمک کند. علاوه بر این، تحلیل انجام شده اجازه می‌دهد تا روند فعلی در توسعه راه‌کار BI شناسایی شود. این تجزیه و تحلیل می‌تواند به عنوان نقشه راهی باشد که ممکن است هنگام انتخاب یک راه‌کار BI  متناسب با نیازهای سازمان مورد استفاده قرار گیرد. برای این منظور، ما جدول Feature-to-BIsolution را ایجاد کردیم و هرمی از ویژگی ها را به دست آوردیم که روند توسعه راه‌کار BI را منعکس می‌کند - با تمرکز ویژه بر ویژگی های جدید و آینده.

در جدول اول، ما 20 ابزار BI (راه‌کار) انتخاب شده را لیست می‌کنیم. در حال حاضر مشخصات آن‌ها در بازار موجود است و از طریق لینک مشخص شده در دسترس است. علاوه بر راه‌کارهای ارائه شده توسط فروشندگان برجسته(به عنوان مثال، مایکروسافت، IBM، SAP )، ما فروشندگان کوچکتری را نیز بررسی کرده‌ایم که برخی از ویژگی های جالب را ارائه می‌دهند (به عنوان مثال، Avlino، Sisense، QlikTech ).

در بیشتر ابزارهای تحلیل شده در این لیست راه‌کارهای برجسته Gartner برای BI گنجانده شده است (King, 2018). برخی از آنها مانند Domo، Sisense، Tableau، Power BI و Qlik در لیست بهترین نرم افزارهای تجاری سال 2018 گارتنر هستند که توسط مشتریان بررسی شده اند (Gartner, 2018h). به طور کلی، این لیست مخصوص استفاده آسان (easy-to-use) است که طیف گسترده ای از قابلیت های گردش کار تحلیلی را پشتیبانی می‌کند که نیازی به مشارکت قابل توجه متخصصان فناوری اطلاعات ندارد و به کاربران نهایی امکان انتخاب سریع ابزارها را می‌دهد. به عنوان مثال، ابزارها می‌توانند از قبل مدل داده‌ای از پیش تعریف شده را به عنوان پیش شرط تجزیه و تحلیل قرار دهند و در بعضی موارد، امکان تولید خودکار یک مدل داده‌ای قابل استفاده مجدد را فراهم می‌کنند.

توجه داشته باشید که تولید کنندگان نرم افزارهایBI به طور مکرر نسخه‌های جدید را با ویژگی های جدید منتشر می‌کنند، بنابراین در این مقاله، ما در حال بررسی وضعیت آن‌ها در نیمه دوم سال 2018 هستیم. به همین دلیل، هنگام انتخاب یک راه‌کار BI برای سازمان، توصیه می‌شود از ویژگی های فعلی و آینده ارائه شده در راه‌کار BI یک تولید کننده خاص سوال کنید. سرعت تولید / انتشار محصول BI باید به عنوان یکی از عوامل کلیدی در انتخاب در نظر گرفته شود زیرا ماهانه تعداد ویژگی‌های آن افزایش و بهبود می‌یابد. در بخش بعدی برای راه‌کارهای BI ذکر شده در جدول یک، با ارزیابی ویژگی‌های آن‌ها در برابر ویژگی‌های پایه و پیشرفته، تجزیه و تحلیل را انجام می‌دهیم.

جدول شماره یک- راه‌کارهایی (نرم افزار) که برای مقایسه انتخاب شده است.

Web page

BI Solutions

https://www.tableau.com/

Tableau

https://www.microstrategy.com/us

MicroStrategy

https://www.board.com/en

BOARD

https://looker.com/

Looker

https://www.longview.com/

Longview

https://www.sisense.com/

Sisense

https://www.hitachivantara.com/go/

Pentaho

https://www.domo.com/

Domo

https://www.yurbi.com/

Yurbi

https://powerbi.microsoft.com/en-us/

Power BI

https://www.qlik.com/us

Qlik

https://www.birst.com/

Birst

https://www.yellowfinbi.com/

Yellowfin

https://www.gooddata.com/

GoodData

https://www.dundas.com/dundas-bi

Dundas BI

https://www.sap.com/products/crys

SAP Crystal Cloud

https://www.ibm.com/products/cog

IBM Cognos Analytics

https://www.salesforce.com/

Salesforce

https://avlino.com/

Avlino

https://jupyter.org/

Jupiter


 جدول مقایسه‌ای برای بررسی ویژگی‌ها


در این بخش، تعداد بیست ابزار انتخاب شده BI را در مقابل ویژگی‌های آن‌ها در قالب ماتریس محصول / ویژگی که در جدول 2 نشان داده شده است، تحلیل می‌کنیم. علامت سبز نشان دهنده امکان پشتیبانی از feature مشخص شده و علامت‌های قرمز رنگ عدم پشتیبانی از آن ویژگی را نشان می‌دهد. این جدول به سادگی امکان بررسی ویژگی‌های یک راه‌کار خاص BI و مقایسه آن با سایر راه‌کار ها را فراهم می‌کند که این امر به ما در درک وضعیت موجود در بازار ابزارهای هوش تجاری و شناسایی راه‌کارهایی با ویژگی های پیشرفته کمک می‌کند. همچنین می توانیم راه‌کارهایی را شناسایی کنیم که برخی از ویژگی‌ها که به طور استاندارد در راه‌کارهای BI وجود ندارد، مانند دریاچه های داده و یکپارچه سازی اینترنت اشیا، تجزیه و تحلیل تقویت شده، یادگیری عمیق، وNLP را ارائه می‌دهد.

بررسی ها نشان می‌دهد که بیش از 90 درصد از راه‌کارهای تجزیه و تحلیل داده‌ها برای تجزیه و تحلیل؛ تجزیه و تحلیل موردی، داشبورد، کوئری‌های موردی، گزارش‌های موقت و KPI ها را ارائه می‌دهند که در گروه اصلی ویژگی ها هستند. اگرچه اکثر تولیدکنندگان طیف کاملی از ویژگی‌ها را در راه‌کارهای خود ارائه می دهند، اما ممکن است از لحاظ عملکرد و کیفیت سایر راه‌کار ها متفاوت باشند و لزوما یکسان نیستند. از آنجا که فروشندگانی در بازار وجود دارند که در تولید ویژگی‌های خاص بسیار کم تخصص هستند، برای تولیدکنندگان راه‌کارهای کامل BI این امکان وجود دارد که این راه‌کارها را در ابزارهای خود پیاده سازی کنند، بنابراین آن‌ها منابع خود را صرف توسعه ویژگی‌های از قبل ساخته شده نمی‌کنند. از این رو، ادغام، اتصال، همکاری و مشارکت بین تولید کنندگان راه‌کارهای BI امکان توسعه سریع راه‌کار بازار ابزارهای BI را فراهم کرده است.

 بررسی‌های انجام شده تایید می‌کند که اکثر راه‌کارها امکان ادغام ویژگی‌های خاص از سایر محصولات را فراهم می‌کنند.  به عنوان مثال، قابلیت‌های مصورسازی پیشرفته یک راه‌کار را می‌توان در محصولات دیگر گنجاند تا بهترین راه‌کار مصورسازی را به مشتریان خود ارائه دهد. انتظار می رود که فروشندگان به جای توسعه محصولات خود، به سمت ادغام راه‌کارهای دیگر تأمین کنندگان در محصولاتشان متمایل شوند تا ابزار آن‌ها بتواند بالاترین امتیاز را بگیرد.

تجزیه و تحلیل داده‌های بزرگ در ابزارهای BI نفوذ زیادی پیدا کرده است و  از بیست راه کار معرفی شده، تعداد 19 راه‌کار، توانایی انجام تجزیه و تحلیل داده‌های بزرگ را دارند. سایر ویژگی‌های پیشرفته این روند توسعه را در سال 2019 دنبال می‌کنند.

در حال حاضر بیش از 40 درصد از راه‌کارها، دریاچه داده و تجزیه و تحلیل اینترنت اشیا را به عنوان ویژگی‌های پیشرفته BI ارائه می دهند. با پیاده سازی این ویژگی‌ها در آینده، سازمان ها نیاز به استخراج، تبدیل و بارگذاری داده‌ها از دریاچه های داده را به انبارهای داده برای پرس و جو، گزارش و کاوش داده‌ها کاهش می‌دهند. همچنین، این گزینه‌ها دسترسی آسانتر و سریعتر به محتویات دریاچه داده‌ها و قابلیت جستجو در انواع مختلف داده‌ها را فراهم می‌کنند. جریان داده‌ها (Data Streaming) و تجزیه و تحلیل های بی درنگ (Real Time) برای تعداد بیشتری از سازمان‌ها نیز به یکی از اولویتهای مهم و استراتژیک تبدیل شده است. تحلیل اینترنت اشیا به سازمان امکان می‌دهد انواع دستگاه‌ها مانند ماشین‌های صنعتی، وسایل نقلیه و قرائت‌های موجود در پوشیدنی‌های شخصی را کنترل و در سیستم های تحلیلی ادغام کند. اکنون کاربران این امکان را دارند که دستگاه‌های متصل به اینترنت اشیا (IoT) را به عنوان بخشی از فناوری عملیاتی و استراتژی‌های اینترنت صنعتی پیاده سازی کنند. از آنجا که این فناوری‌ها در بازار چندان جدید نیستند، می‌توان انتظار داشت که این ویژگی ها به زودی به استانداردی در راه‌کارهای مدرن BI تبدیل شوند. راه‌کارهای تجزیه و تحلیل BI، و همچنین سایر فناوری‌ها، در راستای فراهم کردن شرایط برای یادگیری ماشین، NLP وAI هستند. همانطور که گارتنر می‌گوید: تا سال 2020 تعداد کاربران راه‌کارهای تجزیه و تحلیل هوشمند تجاری که با قابلیت کشف داده‌های افزوده شده از یکدیگر متمایز می شوند، با دو برابر سرعت رشد می‌کنند - و دو برابر ارزش کسب و کار را ارائه می‌دهند (Bauer, 2018). تحلیل روند بازار راهکارهای BI نشان می‌دهد که مبحث برنامه ریزی استراتژیک، الگویی شامل جستجو و روایت زبان طبیعی، آماده سازی داده‌ها، تجزیه و تحلیل پیشرفته خودکار و قابلیت های کشف داده به صورت بصری رو به افزایش است.

هرم ویژگیهای BI

در مرحله بعدی، هرم ویژگی‌ها را معرفی می‌کنیم. ویژگی‌های سیستم های هوش تجاری بر اساس فراوانی استفاده از آن‌ها مشخص و در شکل 1 نشان داده شده است. رایج ترین ویژگی‌های پیاده سازی شده در اکثر ابزارهای BI در پایین هرم گروه بندی شده و ویژگی‌های کمتر پیاده سازی شده در بالای هرم قرار دارند.

لایه پایین شامل ویژگی‌هایی است که ما آن‌ها را به عنوان ویژگی پایه در نظر میگیریم که در 60 درصد از ابزارهای BI مشترک هستند. لایه دوم شامل تجزیه و تحلیلهای تکمیل شده، تجزیه و تحلیل IoT و دریاچه‌های داده قرار دارند که تقریباً در 20 درصد از ابزارهای BI قابلیت اجرا دارند. با این حال،  بر اساس گزارش‌ها و تحلیل‌های مختلف، حدود 40 درصد از راه‌کارهای تجزیه و تحلیل‌های پیشرفته به شکل کم و بیش پیشرفته در حال توسعه هستند. با امکان استفاده و پشتیبانی از الگوریتم‌های تصمیم ساز هوشمند که کشف تصمیمات تجاری و پنهان را برای تصمیم گیرندگان کسب و کار آسان می‌کند، انقلابی در راه‌کارهای دسترسی بصری به داده‌های پیچیده ایجاد می‌شود. همچنین، زمان مورد نیاز برای آماده سازی داده‌ها با استفاده از اتوماسیون کردن به طور قابل توجهی کاهش یافته است. بررسی‌ها نشان می‌دهد که تمام راه‌کارها کاملاً به سمت تجزیه و تحلیل‌های تکمیلی در حال حرکت هستند.

لایه سوم شامل تحلیل‌های عمیق است. این بخش نشان میدهد که تقریباً 20 درصد از راه‌کارهای هوش تجاریِ مورد تجزیه و تحلیل، انواع تجزیه و تحلیل‌های مبتنی بر یادگیری عمیق را ارائه می دهند.

·        با هدف حل مشکلات پیچیده به روشی که مغز انسان انجام می‌دهد (درک الگوهای مختلف، بررسی مقایسه‌ها، درک تفاوت‌ میلیون ها سند) ما می توانیم از طریق یک Hover ساده بالای متن، پاسخ ها را دریافت کنیم - هوشمند و مستقیما در مرورگرهای وب، برنامه ها و ابزارهای BI تعبیه شده است و نتایج را بدون هیچ گونه کلیک و بدون تاخیر ارائه می‌دهد.

·        پرسیدن سوال‌ها به زبان طبیعی و دریافت پاسخ فوری - تلفیق راه‌کارهایی مانند Alexa برای تبدیل برنامه‌های تحلیلی به مربی شخصی.

·        بینش شخصی - نمایش پویا و هوشمندی که نمای شخصی شده از اطلاعات بر اساس کسانی که در اطراف شما ایستاده‌اند، ارائه می‌دهد. یا یک روش هوشمندتر برای دیدن - امکان استفاده از شناسایی هویت مبتنی بر بلوتوث برای بدست آوردن داده‌های مربوط به برخی از افراد یا فناوری GPS برای واکشی داده‌ها در یک ملک یا مکان.

لایه بالایی شامل ویژگی‌های نو ظهوری مانند Edge computing و NLP است که به راه‌کارهای BI این اجازه را می‌دهد تا نظرات، رفتار و احساسات انسان را درک کنند. راه‌کارهایی که ما تحلیل کرده‌ایم هنوز چنین گزینه هایی را ارائه نمی‌دهند، اما با بررسی روندها، می‌توان نتیجه گرفت که این ویژگی‌ها به زودی در نسخه های بعدی BI پیاده سازی می شوند.

نتیجه گیری

کسب بهترین و بیشترین ارزش از داده‌ها منوط به یافتن راه‌کار هوش تجاری متناسب با نیاز‌های سازمان است. لازم است مشخص شود که این راه‌کار چه ویژگی‌هایی باید پیاده سازی کند، آیا راه‌کار به راحتی قابل انطباق است، یا استفاده از آن آسان است، شرکت سازنده چگونه آن را پشتیبانی می‌کند، چقدر در مسائل امنیتی قوی است و در آخر هزینه چنین راه‌کاری چقدر است. برای درک بهتر این مسائل و چالش‌ها، وضعیت فعلی بازار BI تا پایان سال 2018 را تجزیه و تحلیل کرده و لیستی از 20 راه‌کار BI را در کنار 24 ویژگی-عملکرد، مقایسه کردیم.

ماتریس مقایسه به مقایسه ویژگی‌های اساسی و پیشرفته 20 محصول تحلیل شده BI می‌پردازد. این ماتریس نشان داد که بسیاری از راه‌کارهای BI تمام ویژگی های اساسی را ارائه می دهند، اما تفاوت قابل توجهی را می‌توان در نفوذ ویژگی های پیشرفته یافت، که در کمتر از 20 درصد از ابزار وجود دارد. با نتایج حاصل از تجزیه و تحلیل، می‌توان نتیجه گرفت که ابزارهای Domo، Sisense، Tableau، Power BI و Qlik در لیست بهترین نرم افزارهای تجارتی سال 2018 گارتنر قرار دارند که توسط مشتریان بررسی شده است زیرا این راه‌کارها ویژگی‌های پیشرفته تری نسبت به سایر محصولات به مشتریان خود ارائه می‌دهند. علاوه بر ابزارهایی که در لیست گارتنر گنجانده شده است، ابزارهای دیگری نیز وجود دارد از جمله ابزارهایی که ویژگی های مشابهی را ارائه می دهند و باید مورد توجه قرار گیرند. این جدول به ما توانایی استفاده از همان روش تجزیه و تحلیل برای هر ابزار دیگر و مقایسه آن با برخی از ابزارهای پیشرو در بازار و سایر ابزارهای تجزیه و تحلیل شده در این مقاله را می‌دهد. همچنین اگر به دنبال یک راه‌کار BI هستیم، این می‌تواند یک نقطه شروع برای به دست آوردن یک نمای کلی از بازار باشد و می‌تواند به سازمان ها در روند انتخاب کمک کند.

 هرم ویژگی، بینشهایی را درباره بلوغ فعلی بازار ارائه می دهد و روند آینده توسعه BI را نشان می‌دهد. این یک نمای واضح از ویژگی‌های استاندارد است که در تمام راه‌کارهایی که به تازگی در حال ظهور هستند پیاده سازی و در آینده در آن‌ها اجرا می‌شوند. هرم چارچوب کلی را برای ارزیابی بلوغ محصول BI فراهم می‌‌ند و امکان شناسایی روندهای آینده در ویژگی‌های BI فراهم می‌کند. علاوه بر این، همراه با طبقه بندی جدول 2، موقعیت دقیق ابزارهایBI را با توجه به ویژگی‌های موجود در راه‌کارهای رقابتی ارزیابی کنید. ما از این نتایج متوجه شده‌ایم که هنوز هیچ یک از تولید کنندگانedge computing و NLP را در راه‌کارهای خود پیاده سازی نکرده‌اند. با این حال، تاکید ویژه‌ای بر برخی از این ویژگی ها به عنوان یک مسیر توسعه روشن که مدرن ترین راه‌کارهای BI دنبال می‌کنند، داریم.و در نهایت باید گفت که بازار راه‌کارهای BI یک بسیار پویا است و به احتمال زیاد edge computing و NLP آینده سیستم های BI را تغییر می‌دهند، برنامه هایی که ما قصد داریم در آینده کار آن‌ها را کنترل و بررسی کنیم.


منبع

 بخش دوم

بخش اول


انتخاب یک راهکار مناسبِ هوش تجاری بر اساس نیاز کسب و کار- بخش دوم

انتخاب راهکار مناسب هوش تجاری

برای انتخاب راهکار مناسب BI بین تعداد زیادی از گزینه های موجود در بازار، لازم است تصمیم بگیرید که چه قابلیت‌هایی لازم است و کدام یک برای نیازهای سازمان شما لازم و ضروری نیست. آیا کسی راه‌کاری با قابلیتهای اولیه انتخاب می‌کند یا یک پلت فرم پیشرفته با ویژگی های تخصصی تر ؟ پاسخ ساده نیست، در پایان این مقاله، برخی از پاسخ های احتمالی به این سوالات را بررسی می‌کنیم.

بیشتر راه‌کارهای BI موجود در بازار امروز ویژگی های پایه (استاندارد) را ارائه می دهند: تجزیه و تحلیل داده‌ها، گزارش‌های موردی، داشبورد، مصورسازی داده‌ها، پرس و جوهای موردی، تجزیه و تحلیل‌های موردی و شاخص‌های کلیدی عملکرد (Badawy et al. 2016). هنگام انتخاب یک راه‌کار هوش تجاری، باید این واقعیت را در نظر بگیریم که برخی از پلتفرم‌های پیشرفته با وجود اینکه تخصصی و پیشرفته هستند، تمام ویژگی های اولیه و پایه را پوشش نمی‌دهند. از این رو لازم است، برخی نیازها و ویژگی‌های پیشرفته از طریق سایر ابزارها فراهم شود. بعلاوه، این امکان نیز وجود دارد که محصولی، برخی از ویژگی‌های اساسی یا پیشرفته را از سایر توسعه دهندگان راه‌کارهای هوش تجاری تهیه کنید.

ابتدا یک فهرست جامع از ویژگی‌ها و قابلیت‌های پیشرفتهی موجود در راه‌کارهای BI ارائه می‌دهیم این فهرست می‌تواند برای کاربرانی که در جستجوی یافتن راه‌کار مناسب هستند مفید باشد:

·        Master Data/Data Quality Management (MD/MDQ)

بدون داشتن داده‌های صحیح و دقیق امکان تصمیم گیری صحیح وجود ندارد. اهمیت MD / DQM از نیاز به داده‌هایی با کیفیت بالا ناشی می شود: کامل، دقیق، یکپارچه، سازگار و به موقع. در همین راستا، عرضه کنندگان راه‌کارهای BI بر ارائه قابلیت‌های پیشرفته برای مدیریت داده‌ها و کیفیت داده‌ها مانند چرخه کیفیت داده‌ها تمرکز ویژه‌ای دارند. (BARC, 2018a) . چرخه کیفیت داده شامل تمام مراحل مربوط به ارائه اطلاعات با کیفیت بالا به کاربران تجاری است: شناسایی و تعریف متریک، ارزیابی، تغییر و تمیز کردن داده‌ها، ذخیره سازی / دسته بندی/ تاریخچه وکاوش / رتبه بندی (Debattista et al. 2014 & BARC, 2018c). به این ترتیب، استفاده کنندگان می توانند کیفیت داده‌ها را از یک منبع اصلی ذخیره سازی و نگهداری داده به جای چندین پایگاه داده مختلف، کنترل و مدیریت کنند.

·        Data Discovery/Visualization

ابزارهای BI با قابلیتهای پیشرفته کشف و مصورسازی داده‌ها، نیاز به دخالت دانشمندان داده را در هنگام آماده سازی سریع داده‌ها برای تصمیم گیری کاهش می‌دهند. کمک به کشف در داده‌ها همراه با مصورسازی، بهبود فرآیند اکتشاف در داده‌‌ها و حل چالش‌ها تحلیلی پیچیده. علاوه بر این، ترکیب یادگیری ماشین در ابزارهای کشف داده باعث کمک به تحلیلگران در مراحل آماده سازی تا تجزیه و تحلیل و نمایش داده‌ها شده است(BARC, 2018a). این راه‌کار باید ویژگی های کلیدی برای اتصال منابع مختلف، پاکسازی و شکل دادن داده‌ها برای ایجاد مجموعه داده‌های جدید جهت استفاده در تحلیل‌های بصری یا تجزیه و تحلیل‌های پیشرفته را ارائه دهد.

·        Self-Service BI

فرایندی که در آن کاربران نهایی گزارش‌ها و تجزیه و تحلیل‌های مختص به خود را طراحی می‌کنند و در سیستم قرار می‌دهند(Gartner, 2018b). گارتنر پیش بینی می‌کند که خروجی تجزیه و تحلیل کاربران کسب و کار با قابلیتهای سلف سرویس از دانشمندان حرفه ای داده‌ها پیشی خواهد گرفت. این امر یادگیری کاربران کسب و کار را در مورد چگونگی استفاده و بهره‌مندی از تجزیه و تحلیل و ابزارهای BI موثر و ایجاد نتایج مطلوب تجاری در این فرآیند را تسهیل می‌کند (Gartner, 2018c). هوش تجاریِ سلف سرویس، چابکی و زمان رسیدن به دانش را سرعت می بخشد، اما این نباید بر کیفیت نتایج یا کارایی تأثیر بگذارد. این مورد باید بسیاری از الزامات را برآورده کند، از جمله افزایش سرعت نباید اعتماد به داده‌ها را خدشه دار کند و امکان دسترسی آسان، درک داده‌ها را کاهش دهد. همه ذینفعان و طرف های مسئول باید در روند بازسازی شرکت کنند. کیفیت و سازگاری داده‌ها باید از طریق افزایش امنیت داده‌ها و حاکمیت آن‌ها تضمین شود. همچنین رعایت الزامات از نظر معماری و حاکمیت و دستیابی به تعادل بین انعطاف پذیری و کنترل بسیار حیاتی است. (Informatec, 2018 & BARC, 2018b & Henschen, 2013)

·        Data Governance

حاکمیت داده‌ها فرآیندی است که اطمینان حاصل می‌کند داده‌ها هنگام ورود به سیستم از استانداردهای دقیق و قوانین کسب و کار برخوردار هستند. در گذشته، عدم حفاظت از داده‌ها خسارت قابل توجهی به بسیاری از مشاغل وارد کرده بود (Norman, 2001) . از این رو، برای جلوگیری از این شکست ها، حاکمیت داده‌ها با در نظر گرفتن نیروهای متخصص، فرآیندها و فناوری ها در حال پیاده سازی یک استراتژی داده، در خصوص مدیریت سیاست‌ها و چارچوب‌ها و قوانین و مقررات برای سرمایه‌های داده‌‌ای است. یکی از ویژگی های مهم راه‌کارهای BI حاکمیت داده‌ها با انطباق با مقرراتی مانند مقررات عمومی حفاظت از داده‌ها (GDPR)، (Marelli et al., 2018) است.

·        Cloud BI/Data Management

طبق گفته گارتنر، بسیاری از سازمان‌ها تا سال 2021 بخش قابل توجهی از فعالیت‌های داده‌ای خود را به فضای ابری منتقل می‌کنند (Gartner, 2017). از این رو، اکثر شرکت‌هایی که در حال حاضر تولید کننده BI و مدیریت داده در بازار هستند، یک راه‌کار مبتنی بر فضای ابری ارائه خواهند داد. اگرچه cloud BI و مدیریت داده دارای قابلیت‌های عملکردی بسیار مشابه محصول فعلی هستند، اما آن‌ها قیمت های پایین تری دارند و بار بخش های فناوری اطلاعات را کاهش می‌دهند.

·        Augmented Analytics

تحلیل‌های تکمیل شده؛ با استفاده از ML و NLP بینش در داده‌ها را به صورت خودکار افزایش می‌دهد و به آماده سازی و کشف دانش با سرعت بالاتر کمک می کند. این فرایند داده‌ها را برای ارائه نتایج واضح و ساده فراهم می‌کند و همچنین جهت تصمیم گیری دقیق کاربران امکان دسترسی به ابزارهای پیچیده را فراهم می‌کند (Gartner, 2018a). هوش مصنوعی و یادگیری عمیق در تبدیل تحلیل‌های تکمیلی به مفاهیمی که برای کاربران عادی قابل درک باشد، کمک می‌کند. بنابراین باعث متحول شدن تجربه کاربر می‌شود (Victor, 2018). علاوه بر این توسعه و گسترش تحلیل تکمیل شده باعث بهبود تصمیم گیری مدیران می‌شود.

·        Mobile BI

سازمان‌ها مزیت ارائه فرصت‌های تصمیم سازی و تصمیم گیری برای کارکنان یا مدیران را بدون توجه به محل کار آن‌ها مورد بررسی قرار می‌دهند. افزایش استفاده از تبلت‌ها و دستگاه های تلفن همراه باعث افزایش استفاده از سیستم های هوش تجاری در تلفن همراه شده است، این امر بیشتر به دلیل ظرفیت نرم افزارهای هوش تجاری در ارائه مصورسازی قوی و وضوح در نمایش نمودارها و داشبورد می‌باشد (García, 2010).

·        Deep Learning-Powered Analytics

تجزیه و تحلیل مبتنی بر یادگیری عمیق نوعی یادگیری ماشین است که یک مدل شبکه عصبی را برای انجام کارهای شبیه به انسان، مانند تشخیص گفتار، پاسخ دادن به سوالات به زبان اصلی یا شناسایی اشیا آموزش می‌دهد. تا سال 2023، یادگیری عمیق به عنوان راه‌کار ارجح برای برنامه های کاربردی مورد استفاده قرار می گیرد(Gartner, 2018d).

·        Real-Time Analytics

تجزیه و تحلیل بلادرنگ منطق و ریاضیات را جهت تصمیم گیری بهتر در کمترین زمان ارائه می‌دهد. برای برخی موارد استفاده، زمان واقعی به این معنی است که تجزیه و تحلیل در عرض چند ثانیه یا چند دقیقه پس از ورود داده‌های جدید انجام شود (Gartner, 2018e). تجزیه و تحلیل داده‌ها با سرعت بالا و گزارش سریعتر در بسیاری از شرکت ها یک چالش است. سازمان‌ها برای حمایت از تصمیم گیری عملیاتی سریعتر و مبتنی بر واقعیت، نیاز فزاینده ای به در دسترس قرار دادن داده‌های سیستم‌های عملیاتی دارند. هوش تجاری با ویژگی های تجزیه و تحلیل بلادرنگ می‌تواند استراتژی BI موجود در یک سازمان را برای به دست آوردن بینش جدید در مورد داده‌ها جدید، تکمیل کند.

·        Agile BI Development

معماری انعطاف پذیر و مقیاس پذیری است که شامل توسعه سریع و تکرارشونده می‌شود که این فرصت را به سازمان‌ها می‌دهد تا ضمن کاهش هزینه‌ها، تغییرات را به سرعت با الزامات تجاری سازگار کنند. هوش تجاری چابک، به همکاری میان کسب و کار و IT نیاز دارد و با استفاده از نمونه سازی سریع، سازمان ها را قادر می‌سازد سرعت توسعه را افزایش دهند و در عین حال پاسخ بهتری به نیازهای تجاری داشته باشند. رویکرد توسعه چابک هوش تجاری نیز با مدیریت پروژه چابک پشتیبانی می شود، که توسط آن برنامه ریزی، جمع آوری نیازها، توسعه و حتی آزمایش عملکردی، رگرسیون و قابلیت استفاده به صورت تکراری مدیریت می‌شود(BARC, 2018a).

·        Data Warehouse Modernization

سازمان‌ها از چالش‌های جدید فن آوری و کسب وکار آگاه هستند. آن‌ها پتانسیل روش‌های جایگزین برای طراحی معماری انبارداده‌ و استفاده از سایر گزینه های فنی مانند پردازش در حافظه، ذخیره سازی در فضای ابری یا ابزارهای اتوماسیون انبار داده (DWA) را شناسایی می‌کنند. فناوری اطلاعات باید نیازهای تغییر الزامات تحلیلی را برآورده کند و آن‌ها باید در برابر گزینههای پیاده سازی جدید و ارزان تر، با توسعه دهندگان خارج از سازمان رقابت کنند. برای به حداکثر رساندن ارزش تجاری داده‌ها، رویکردهای همکاری لازم برای پوشش انتظارات روزافزون از تجارت مورد نیاز است. وقت آن است که انبارهای داده قدیمی را با نیازهای فعلی مقایسه کنیم و ارزیابی کنیم که چگونه سخت افزار و فناوری به روز شده می‌توانند تجارت را بهتر و راحت تر کنند (BARC, 2018a). انبار داده‌های سنتی برای کنترل سریع رشد داده‌ها و انواع مختلف داده‌ها و کلان داده طراحی نشده‌اند. همچنین، آن‌ها برای همگام سازی با نیازهای مداوم در حال تغییر کاربران نهایی و برنامه‌هایی که به آن‌ها تکیه می‌کنند، طراحی نشده اند (Snowflake, n. d ).

·        Data-Driven Culture

امروزه کارکنان بیش از هر زمان دیگری پیشنهادات خود را ارائه می‌دهند. سطح تحصیلات، تعامل و دانش بیشتر از هر زمان دیگری است. با فرهنگ داده محور، سازمان‌ها می‌توانند تمام داده‌های مربوطه را استخراج کرده و از ارزش هایی که ایجاد میکند به طور کامل استفاده کنند. فرهنگ داده محور با استخراج KPI های مرتبط در تجارت، به فرهنگ سازمانی کمک می‌کند تا به سطح عملکردی عمیقی در کسب و کار برسیم. شفافیت KPI های استخراج شده از داده‌ها، یک عامل کلیدی در رویکرد فرهنگ داده محور در سازمان ها است- فرهنگ مبتنی بر داده.

·        Data Preparation for Business Users

فرآیند پاکسازی، ساختارمند کردن و غنی سازی داده‌ها برای تحلیل های اکتشافی و پیشرفته است. آماده سازی داده‌ها با هدف فراهم آوردن ابزاری برای شکل دادن به داده‌ها بر اساس نیازهای تحلیلی آنها بدون نیاز به توسل به فناوری اطلاعات است.

·        Integrated Platforms for BI and Performance Management (PM)

پلتفرم‌های یکپارچه برای BI و مدیریت عملکرد (PM) -

 هدف بسیاری از سازمان ها پشتیبانی از BI و PM در یک سیستم داده یکپارچه است. به همین دلیل، این یکی از پایدارترین روندها در بازار BI شده است(BARC, 2018a).

·        Embedded BI and Analytics

ترکیب هوشمند تجاری و برنامه های کاربردی- BI و تجزیه و تحلیلهای Embedded معمولا ویژگی های مرتبط با نرم افزار BI (داشبورد، مصورسازی داده‌ها و ابزارهای تجزیه و تحلیل) را به برنامه های غیر BI موجود اضافه می‌کند. Embedded BI تجربه کاربری بسیار تمیزتر و دوستانه تری را برای مشتریان فراهم می‌کند و در نتیجه مزیت اصلی آن نسبت به راه‌کارهایی است که به دو پلتفرم جداگانه احتیاج دارند (Bitner, 2018).

·        Data Storytelling

با مصورسازی داده‌ها، اینفوگرافیکها، داشبوردها، و غیره داستان سرایی داده‌ها شکل میگیرد و این چیزی فراتر از ایجاد نمودارهای جذاب بصری است. داستان سرایی داده‌ها (Data Storytelling) یک روش ساختاری برای برقراری ارتباط بینش داده‌ها است و شامل ترکیبی از سه عنصر کلیدیِ داده‌ها، تصاویر و روایتها است. هنگامی که تصاویر و روایت مناسب را با داده‌های مناسب ترکیب می‌کنید، یک داستان داده‌ای شکل می‌گیرد و آن می‌تواند تأثیر گذار باشد و تغییر ایجاد کند.

·        Using External/Open Data

استفاده از داده‌های خارجی / باز بینش‌های ارزشمندی را می‌توان از رسانه‌های اجتماعی، مشتری، بازار، هواشناسی، داده‌های جغرافیایی و جمعیتی و حتی از یافته های تحلیلی موجود جمع آوری کرد. سازمان ها می توانند این موارد و بسیاری از انواع دیگر داده‌ها را از سایر متخصصان BI، ارائه دهندگان خدمات متخصص یا پلتفرم‌های مختلف کسب و کار ها بدست آورند. این نوع داده‌های اغلب برای ساختن مدل‌های تجاری پیرامون تجزیه و تحلیل هدفمند مورد استفاده قرار می‌گیرند(Micek, 2017).

·        Analytics Teams/Data Labs

تیم های تجزیه و تحلیل / آزمایشگاههای داده واحدهای تجاری جداگانه‌ای هستند که بطور خاص برای آغاز به کار علم داده در یک سازمان طراحی شده‌اند. آن‌ها برای ذخیره، پردازش و تجزیه و تحلیل داده‌ها به سرمایه گذاری در فناوری‌های جدید نیاز دارند. هرچه تجزیه و تحلیل به بلوغ می‌رسد، استقرار و بهره وری چنین راه‌کارهایی حیاتی تر می شود. این موضوع چالش‌های جدیدی برای ارائه دهندگان راه‌کارهای نرم افزاری به وجود می‌آورد و برای پیوند دادن آزمایشگاههای داده، بخش IT و واحدهای تجاری نیاز به تجدید نظر در رویکردهای سازمانی دارند(BARC, 2018a).

·        Visual Design Standards

استانداردهای طراحی بصری روشی است برای ارائه اطلاعاتی که بتوان آن‌ها را به صورت موثر و کارآمد درک کرد. با توجه به نیاز روزافزون به تجزیه و تحلیلِ حجم زیادی از داده‌ها برای ادامه رقابت، روند استانداردهای طراحی بصری در سه سال گذشته ایجاد و مورد توجه قرار گرفته است. پشتیبانی از استانداردهای طراحی بصری به طور فزایندهای به عنوان معیاری تلقی می‌شود که باید برای عرضه کنندگان راه‌کارهایBI در فرآیندهای انتخاب نرم افزار رعایت شود(BARC, 2018a).

·        IoT Analytics

تحلیل اینترنت اشیاء- در حالی که فن آوری های جدید حسگرها، موبایل و بی سیم باعث پیشرفت اینترنت اشیاء (IoT) می شوند، ارزش کسب و کار واقعی را باید بیشتر در تجزیه و تحلیل ها جستجو کرد. توسعه دهندگان شروع به ارائه چنین ویژگی هایی به مشتریان خود می‌کنند، بنابراین سبد خدمات خود را در زمینههای جدید تجاری گسترش می‌دهند. داده‌های اینترنت اشیا به تحلیل داده‌های بلادرنگ نیاز دارند. علاوه بر این، تنوع داده‌های اینترنت اشیا به این معنی است که برای پردازش، ذخیره و اجرای تجزیه و تحلیل موثر بر روی داده‌های اینترنت اشیا، لازم به معماری، ابزارها و فرایندهای جدید است. (Harris, n.d).

·        Big Data Analytics

تجزیه و تحلیل داده‌های حجیم - ابزاری را برای تجزیه و تحلیل مجموعه داده‌های با حجم، تنوع و سرعت بسیار زیاد جمع آوری شده از منابع داخلی و خارجی از جمله متن، حسگرها، موقعیت جغرافیایی و داده‌های جریان کلیک و غیره فراهم می‌کند. در این موضوع تجزیه و تحلیل داده‌های بزرگ باید به طور موثر مجموعه داده‌های بزرگ را در زمان واقعی یا نزدیک به زمان واقعی پردازش کند - از جمله مدل سازی، مصورسازی، پیش بینی و بهینه سازی(Hu et al. , 2014). سازمان ها برای پشتیبانی از تصمیم گیری و بهینه سازی فرآیند از تجزیه و تحلیل داده‌های بزرگ استفاده می‌کنند (Galetto, 2016).

تجزیه و تحلیل داده‌های حجیم شامل تجزیه و تحلیل داده ساختار یافته، تجزیه و تحلیل متن، تجزیه و تحلیل وب، تجزیه و تحلیل چندرسانه‌ای، تجزیه و تحلیل شبکه های اجتماعی و تجزیه و تحلیل تلفن همراه است(Hu et al.,2014).

·        Data Lake

با توجه به تعریف اولیه جیمز دیکسون؛ ذخیره داده‌های حجیم در یک حالت Native از داده‌های ساختاریافته و غیر ساختاریافته(Rajesh & Ramesh, 2016). ذخیره و پردازش داده‌ها به صورت خام، فرمِ اصلی و مستقیم از منابع داده، بدون هیچگونه پاکسازی، استاندارد سازی، بازسازی یا تغییر شکل امکان پذیر است. دریاچه داده‌ها پرس و جوهای موقت، اکتشاف داده‌ها و تجزیه و تحلیل های مبتنی بر کشف را امکان پذیر می‌کند، زیرا مدیریت و ساختار داده را می‌توان در زمان اجرا به صورت همزمان انجام داد(TDWI, n. d.). طراحی یک دریاچه داده برای ذخیره تمام داده‌ها (داده‌های رابطه ای، غیر رابطه ای و حجیم) در همان بستر است (Shepherd et al., 2018).

·        Edge Computing and NLP

Edge Computing و NLP پردازش زبان‌های طبیعی را به درخواستهای کاربر نزدیک می‌کند. BI شاهد تلاش‌هایی برای درک رفتار، نگرش و احساسات کاربر است (Cambria, 2016; Shi, 2016). NLP با همکاری DL نقش محوری در درک زبان نوشتاری یا گفتاری دارد. اخیرا هوش مصنوعی گام فوق العاده‌ای در جهت رسیدن به این هدف برداشته است و انتظار راه‌کارهای هوش تجاری بیشتری با فن آوری های تلفیق گفتار زبان است (Chandrayan, 2017)

ادامه دارد ...

منبع

مراحل کلی در انجام عملیات داده کاوی


می‌توان گفت داده‌کاوی هدف اصلی و نهایی سازمان‌ها در بکارگیری از BI است. انجام عمل داده‌کاوی علاوه بر تخصص و توانایی فنی بالا و تسلط به کسب و کار مربوطه نیازمند مقدمات دیگری نیز هست و تا فراهم نشدن تمامی این مقدمات امکان پذیر نمی‌باشد. در ادامه هر یک از این پیش نیازها را بررسی می‌کنیم.


طراحی و پیاده سازی انبار داده:


بدون وجود انبار داده‌ای جامع و دقیق نمی‌توان به سوی داده کاوی قدم برداشت. پیش از انجام هر نوع عمل کاوش در داده‌ها ابتدا باید از یکپارچگی، صحت و تجمیع اطلاعات اطمینان حاصل شود. اطلاعات باید واقعی و دارای توالی به روز رسانی مشخص باشند. مراحل پیاده سازی انبار داده در اینجا شرح داده شده است.


 بررسی و انتخاب داده‌ها بر اساس نوع الگوریتم مورد استفاده:


فارغ از اینکه از چه ابزاری برای عملیات داده کاوی استفاده می‌کنیم، تعداد الگوریتم‌ها، تنوع و مقاصد آن‌ها متفاوت است. از این رو باید بر اساس نوع الگوریتمی که قصد استفاده از آن را داریم اطلاعات را انتخاب نماییم. الگوریتم‌های داده کاوی در اینجا شرح داده شده است.


تبدیل داده‌ها به فرمت و ساختار مورد نیاز الگوریتم:


هر الگوریتم داده کاوی بر اساس نوع خروجی و هدفی که دنبال می‌کند به فرمت خاص خود نیاز دارد. در این مرحله باید داده‌های مورد نیاز الگوریتم را به شکل و قالب قابل قبول برای الگوریتم تبدیل کنیم. انواع داده‌ای مورد استفاده در Microsoft Data Mining را اینجا مطالعه کنید.


کاوش در داده با استفاده از الگوریتم‌های داده کاوی:

در این مرحله کار را به الگوریتم انتخاب شده می‌سپاریم. الگوریتم بر اساس پارامترها و ورودی‌های مشخص شده شروع به کاوش در داده‌ها می‌کند و روابط و اطلاعات مورد نیاز جهت رسیدن به دانش را در اختیار ما قرار می‌دهد.

در این رابطه می‌توانید الگوریتم کلاسترینگ و سری زمانی را مطالعه نمایید.


تحلیل و تفسیر نتیجه :


بدیهی است که کسب دانش از داده‌ها نیازمند تجزیه و تحلیل و تفسیر خروجی مرحله قبل است. رسیدن به نتیجه مطلوب در کنار تلاش تیمی متشکل از افراد فنی و غیر فنی که تسلط کامل برروی اطلاعات و کسب وکار دارند میسر است.


استفاده از فرمت ساعت به عنوان Measure در Cube

فرض کنید بنا به نیاز سازمان باید اطلاعات مربوط به دوره‌های آموزشی و تعداد ساعات‌ سپری شده هر یک از پرسنل در کلاس‌های آمورشی را در داشبورد نمایش دهید. می‌دانیم که برای اینکار ابتدا باید جداول Fact و Dimension مربوطه را در انبار داده طراحی و سپس مدل OLAP و Cube مورد نظر را ایجاد کنیم. به نظر می‌رسد برای اینکار مشکل خاصی وجود نداشته باشد و به سادگی این کار انجام گیرد اما با کمی دقت متوجه می‌شوید که برای ایجاد معیار (Measure) با فرمت زمان (DateTime) با مشکل مواجه هستید چراکه MSBI به شما اجازه نمی‌دهد تا از نوع DateTime به عنوان Measure استفاده کنید.

برای حل این مشکل مراحل زیر را انجام دهید.

 

1-    ابتدا به جدول Fact خود فیلدی با نوع Float اضاقه نمایید.


 

2-      از کوئری زیر برای تبدیل اطلاعات فیلد CourseTime_TimeFormat به فرمت Float استفاده کنید.

 

  update [TimeMeasure].[dbo].[FactPersonnelCourse]

  set [CourseTime]=convert(float,CourseTime_TimeFormat)

 

3-      به SQL Server Business Intelligence Development Studio رفته و یک پروژه‌ی SSAS جدید با عنوان PersonnelCourse ایجاد کنید.

4-      همانطور که در شکل زیر مشاهده می‌کنید، در هنگام انتخاب Measure فیلد CourseTime_TimeFormat نمایش داده نمی‌شود زیرا نوع آن بعنوان معیار قابل قبول نمی‌باشد و فقط فیلد CourseTime که نوع اعشاری دارد نمایش داده می‌شود.



5-      پس از اتمام مراحل ساخت Cube پروژه را پردازش کنید و به صفحه‌ی Browser بروید.

6-      معیارها و ابعاد مورد نظر خود را به محل نمایش انتقال دهید. همانطور که در شکل زیر مشاهده می‌‌کنید اطلاعات به صورت اعشاری و همانطور که در Fact ذخیره شده است نمایش داده می‌شود.

 

7-      برای اینکه اطلاعات نمایش داده شده را به فرمت ساعت مشاهده کنید کافی است خصوصیت Format String معیار Course Time را به HH:MM تغییر دهید.

8-      پروژه را مجدد پردازش کنید. همانطور که مشاهده می‌کنید اطلاعات به فرمت ساعت نمایش داده می‌شود.

 

با تغییر ابعاد گزارش دلخواه خود را مشاهده کنید.



سری‌های زمانی ماکروسافت(Microsoft Time Series )

الگوریتم سری‌های زمانی (Time Series) یک الگوریتم پیش بینی بر جسته است. در واقع ترکیبی از رگرسیون اتوماتیک و تکنیک‌های درخت تصمیم می‌باشد. این الگوریتم را ART (Auto Regression Tree) هم می‌نامند. به مثال زیر توجه کنید:

 

فرض کنید که مالک یک فروشگاه هستید و قصد دارید پیش بینی فروش چند هفته آینده را برای هر گروه از محصولات بدانید، تا بتوانید موجودی کالاهایتان را مدیریت نمایید. نمی‌خواهید ‌موجودی بیشتری در انبار داشته باشید و همچنین کالاها را بیش از اندازه در انبار نگه دارید. از طرفی هم می‌دانید که در تعطیلات، فروش برخی از کالاها ممکن است افزایش یابد و می‌خواهید بدانید که چه زمانی و به چه مقدار از هر کدام از این محصولات باید سفارش دهید و در انبار داشته باشید.

الگوریتم سری‌های زمانی ماکروسافت به منظور پاسخ به این نوع سوالات طراحی شده است.


معرفی الگوریتم سری‌های زمانی


سری‌های زمانی شامل یک سری اطلاعات از افزایش‌های متوالی در طول زمان یا سایر شاخص های متوالی که در یک دوره زمانی  جمع آوری شده‌اند؛ می باشد. دنیای پیرامون ما ثابت نیست و متغیرهای بسیاری با تغییر زمان ارزش خود را تغییر می‌دهند و در نهایت ترتیب ارزش‌های یک متغیر در طول زمان یک سری زمانی را تشکیل می دهد.

به عنوان مثال قیمت نهایی سهام ماکروسافت که  به صورت روزانه می باشد در  یک سری زمانی نمایش داده شده است.

 فروش ماهانه شرکت پیسی یک سری زمانی را تشکیل می‌دهد و همچنین در آمد هر فصل یک شرکت نیز یک سری زمانی است. در سری‌های زمانی بیشتر اوقات ارزش و مقدار متعلق به یک زمان، به ارزش در زمان قبل بستگی دارد. .به عنوان مثال قیمت نهایی سهام میکروسافت در 10 می(May) شدیدا به قیمت تمام شده آن در 8 و 9 می بستگی دارد.

مقادیر مشاهده شده در سری‌های زمانی ممکن است پیوسته و یا گسسته باشند. ما تنها سری‌های زمانی‌ای را که مقادیر آنها پیوسته می‌باشند را در نظر می گیریم.

 ارزش سهام، میزان فروش یک فروشگاه و درآمد شرکت به شکل پیوسته است و یک سری زمانی از پیش بینی وضعیت آب و هوا، مشاهداتی از مقادیر گسسته‌ی، آفتابی، ابری، بادی یا بارانی است.

همانطور که پیشتر گفته شد هدف اصلی از جمع آوری داده‌های سری زمانی پیش بینی و یا پیشگویی درباره مقادیر آینده است. به مثال‌های زیر توجه کنید:

 در یک کارخانه‌ صنعتی به پیش بینی درخواست‌های مشتریان در ماه‌های آینده جهت برنامه ریزی تولید نیاز است.

یک وب سایت باید رشد و ترافیک کاربران را به منظور استفاده از یک سخت افزار مناسب تخمین بزند و همچنین یک فروشگاه خرده فروشی باید فروش محصولات را به منظور بهینه سازی موجودی انبار پیش بینی نماید.