هوش تجاری (Business Intelligence)

هوش تجاری (Business Intelligence)

به اشتراک بگذاریم برای یادگیری، یاد بگیریم برای به اشتراک گذاری
هوش تجاری (Business Intelligence)

هوش تجاری (Business Intelligence)

به اشتراک بگذاریم برای یادگیری، یاد بگیریم برای به اشتراک گذاری

عوامل حیاتی در موفقیت سیستم‌های هوش تجاری (Critical Success Factors)


اجرای سیستم هوش تجاری یک تعهد پیچیده است که به منابع قابل توجهی نیاز دارد


مقدمه

اخیرا سیستم‌های هوش تجاری با اولویت بالایی در فهرست بسیاری از مدیران فناوری اطلاعات قرار گرفته است. [12,11]

طبق نظر رین اشمیت و فرانسیس [22]، سیستم هوش تجاری مجموعه یکپارچه ای از ابزارها، فن آوری‌ها و محصولات برنامه ریزی شده ایست که برای جمع آوری، هماهنگی، تحلیل و در دسترس قرار دادن داده ها استفاده می شوند. بطور ساده می توان گفت وظایف اصلی سیستم هوش تجاری شامل اکتشاف هوشمند، یکپارچه سازی، تجمیع و تحلیل چند بعدی داده های نشات گرفته از منابع مختلف اطلاعاتی است [21]بطور ضمنی در این تعریف داده‌ها، منابع بسیار با ارزش سازمان در نظر گرفته شده است بطوریکه از کمیت به کیفیت تبدیل می شوند[27] . در نتیجه امکان یکپارچه سازی داده‌های حجیم سازمان از منابع داده‌ای مختلف فراهم می‌شود و دیدی 360 درجه از کسب و کار ارائه می‌دهد. [5, 27] بنابراین برای تسهیل بهبود تصمیم گیری، اطلاعات با معنی می‌توانند در زمان و مکان مناسب، و به شکل مناسب برای کمک به افراد، بخش‌ها، گروه‌ها و یا حتی واحدهای بزرگتر ارائه شوند.

 بر اساس تحقیق‌های بسیاری که در مورد CSFها انجام شده، پیاده سازی سیستم‌های هوش تجاری پیرو سنت و رسوم پروژه‌های کاربردی ماننده سیستم‌های تراکنشی نیست [10]. اما این نوع پروژه‌ها ویژگی‌های مشابهی هم با سیستم‌های زیر بنایی همچون ERP ها دارند. پیاده سازی سیستم‌های هوش تجاری فعالیت‌های ساده‌ای همچون خرید ترکیبی از نرم افزارها و سخت افزارها نمی‌باشد بلکه یک تعهد پیچیده است که نیاز به زیرساخت‌ها و منابع مناسب در طول یک دوره دارد. [10,19,18]


گام اول در CSFها بحث و جستجو

چارچوب CSFها در شکل زیر نشان داده شده و بطور خلاصه تشریح می‌کند که چطور مجموعه‌ای از عوامل مهم منجر به اجرای موفقیت آمیز سیستم هوش تجاری می‌شوند. آریاچاندرا و واتسون [2]معیار موفقیت اجرای این تحقیق را در دو بعد کلیدی می‌بینند: عملکرد فرایند (مانند اینکه فرایند پیاده سازی سیستم هوش تجاری چطور پیش رفت) و عملکرد زیرساخت(بطور مثال کیفیت سیستم و استاندارد خروجی).

 عملکرد زیرساخت به سه متغیر عمده موفقیت IS شباهت دارد که توسط دلون و مک لین توصیف شده [7, 8]، یعنی کیفیت سیستم، کیفیت اطلاعات و کاربرد سیستم، در حالیکه عملکرد فرایند می‌تواند از نظر برنامه زمانی و بودجه ارزیابی شوند. بطور خاص، کیفیت سیستم مرتبط با ویژگی‌ کارایی سیستم پردازش اطلاعات است. یعنی سیستم باید انعطاف پذیر و قابل سنجش باشد و توانایی یکپارچه کردن داده ها را داشته باشد [2, 7, 8]. کیفیت اطلاعات به دقت، کامل بودن، بهنگام بودن، تناسب، انسجام و سودمندی اطلاعات تولید شده توسط سیستم اشاره میکند[2, 7, 8]. کاربرد سیستم به عنوان "میزان استفاده از خروجی یک سیستم اطلاعاتی" تعریف می شود[7, 8]. متعاقبا،کاربران و سازمان‌ها مزایای اجرای سیستم هوش تجاری را ارزیابی می کنند[13].. این برداشت از مزایا قسمتی از زنجیره تکاملی تعاملی کسب و کار در نظر گرفته می‌شود که برای حمایت بیشتر از نیازهای در حال تحول کسب و کار منجر به بهبود سیستم های هوش تجاری می شود[3,4].

 " سیستم تنها زمانی موفق خواهد شد که کاربران کسب و کار به شناسایی و مدل سازی دانش همچنین نظارت و اصلاح داده را بطور مداوم ادامه دهند. [25]"

بطور خلاصه این قائده یکی از عوامل حیاتی موفقیت در اجرای سیستم‌های هوش تجاری است و فقدان آنها منجر به شکست سیستم می شود.


بعد سازمانی

حمایت و پشتیبانی مدیریت

حمایت و پشتیبانی مدیریت متعهد بطور گستردهای به عنوان مهمترین عامل پیاده سازی سیستم هوش تجاری بیان شده است. پشتیبانی و حمایت مستمر مدیران کسب و کار، کسب منابع عملیاتی لازم مانند بودجه، مهارت‌های انسانی و ملزومات دیگر را آسانتر می‌سازد.

" حفظ تعهد و پشتیبانی حامی پروژه‌ها در سراسر پروژه-زیرا شرایط می‌توانند در طول عمر پروژه تغییر کنند."

 

اگر بانی یا مدیر پروژه از جانب کسب و کار سازمانی باشد سودمندتر از وقتی است که از واحد IT باشد. بطور مشابه مطالعات واتسون و همکاران[30] هم این مسئله را تائید می کند در واقع بانی باید نیاز جدی به قابلیت‌های هوش تجاری را برای هدفی خاص حس کرده باشد.

پیاده سازی سیستم هوش تجاری، عملی ابتکاری برای بهبود تطابق پذیری اطلاعات جهت پشتیبانی تصمیم است [3, 4]. به عنوان مثال مدل بودجه بندی نمونه مبتنی بر تقاضا که برای پیاده سازی سیستم‌های تراکنشی است برای سیستم های هوش تجاری که ماهیت تکاملی دارند کاربرد ندارد. سیستم هوش تجاری از طریق فرایند توسعه تکرارشونده، مطابق با الزامات کسب و کار پویا تکامل می یابد[19]. بنابراین شروع هوش تجاری بخصوص برای سازمان‌هایی در مقیاس بزرگ نیازمند اختصاص منابع و بودجه مناسب از سوی مدیریت ارشد برای غلبه بر مسائل معمول سازمان است. برخلاف سیستم‌های مرسوم پردازش تراکنش برخط (OLTP)، چالش‌های سازمانی در طول دوره استقرار و در عمل بوجود می‌آیند، این چالش‌ها در مسائل زیادی مانند پردازش کسب و کار، مالکیت داده، کیفیت داده، نظارت و ساختار سازمانی آشکار می‌شود. بسیاری از واحدها تمایل به تمرکز بر دستاوردهای تاکتیکی خود دارند و اثرات ناهموار تحمیل شده بر واحدهای کسب و کار دیگر را نادیده می گیرند.

 

"هوش تجاری تلاش می‌کند تا موانع‌ موجود در حوز‌ه‌هایی که کار کردن با آن‌ها مشکل است را کاهش دهد. از این رو به موانع غیر فنی زیادی بر خورد می‌کند. به عنوان مثال مالک یک سیستم تراکنشی مایل است تا تراکنش‌ها به صورت روزانه انجام شوند تا زمانیکه همه آن‌ها تمام شود. این چیزی است که باید مراقبش باشیم."

بنابراین تعهد و درگیر بودن مدیریت ارشد مخصوصا در شکستن موانع تغییر و "ذهنیت" در سازمان ضروری است.

 

استراتژی مناسب و چشم انداز روشن

از آنجایی که شروع هوش تجاری توسط کسب و کار هدایت می‌شود چشم انداز استراتژیک کسب و کار باید پیاده سازی را هدایت کند. برای استقرار کسب و کاری یکپارچه در درجه اول چشم اندازی بلند مدت لازم است. کسب و کار باید با چشم انداز استراتژیک هم راستا باشد تا بدین وسیله به اهداف خود دست یابد و نیازهایش را برآورده کند. اگر چشم انداز کسب و کار بطور کامل مشخص نشده باشد در نهایت پذیرش و نتیجه سیستم هوش تجاری را تحت تاثیر قرار می دهد.

اقدامات هوش تجاری باید با استراتژی کلی ترکیب شوند تا پیگیری جدی و حمایت مدیران ارشد سازمان را با خود داشته باشد در غیر این صورت آن‌ها حمایت مدیران ارشد را که برای موفقیت لازم است دریافت نمی‌کنند. چشم انداز ابزاری است که مدیر ارشد به وسیله آن می تواند به سرعت استراتژی سازمان را شناسایی و درک کند.

دلیل مهم شکست بعضی از پروژه های هوش تجاری، چالش‌های فنی نیست بلکه متداول‌ترین دلیل آن همراستا نبودن اقدامات هوش تجاری با چشم انداز کسب و کار است که در نتیجه نه نیازهای کسب و کار و نه رضایت مشتریان را برآورده می کند. داشتن کسب و کاری که به خوبی نهادینه شده برای حفظ تعهد سازمانی به سیستم جدید هوش تجاری، مهم است. اکثر مصاحبه شوندگان این تصور را رد کردند که اگر یک سیستم عالی نهادینه شود مردم از آن استفاده خواهند کرد.

 " سیستم هوش تجاریی که توسط کسب و کار هدایت نشده باشد سیستمی شکست خورده است. هوش تجاری مفهومی کسب و کار محور است و مشایعت فناوری اطلاعات برای حل مشکل به ندرت نتیجه خوبی دارد.(منظور مشکل کسب و کار است)"

 کسب و کاری یکپارچه که از تحلیل دقیق نیازها منتج می شود احتمال بدست آوردن حمایت مدیریت ارشد را افزایش می‌دهد.

 " به منظور حمایت مدیران ارشد؛ آن‌ها باید درک کنند؛ زمانی که درک کردند به راحتی می‌توانند حمایت کنند."

 بنابراین کسب و کار اصولی منافع استراتژیک پیشنهادی، منابع، هزینه‌ها و زمان بندی را شناسایی می کند. درک اینکه پیاده سازی هوش تجاری یک پروژه نیست بلکه فرایند است بسیار مهم است .[4] سیستمهای هوش تجاری بطور پویا تکامل می‌یابند و لزوما محدود و قابل پیش بینی نیستند. به عنوان مثال حجم پایگاه داده تحلیلی در سال اول بهره برداری دو برابر می شود و همچنین تعداد کاربران بطور قابل توجهی افزایش می یابد [22].

 

بعد فرایندی

پشتیبانی کسب و کار محور و ترکیب متعادل تیم

اکثر مصاحبه شونده‌ها معتقد بودند که داشتن رهبری مناسب از سوی کسب و کار سازمان برای موفقیت پیاده سازی حیاتی است. اینکه رهبر، شخصی تیزهوش باشد همیشه مهم است چون می‌تواند چالشهای سازمانی و مسیر تغییر را پیش بینی کند. از همه مهمتر، رهبر مبتنی بر کسب و کار باید سیستم هوش تجاری را از دیدگاه‌های سازمانی و استراتژیک نگاه کند و نباید در مسائل فنی زیاد متمرکز شود.

"تیم به رهبر نیاز دارد. رهبر کسی است که ابزارها را می شناسد کسب و کار و تکنولوژی را درک می کند و می‌تواند الزامات کسب و کار را به معماری هوش تجاری(سطح بالا) برای سیستم ترجمه کند."

در واقع، هوش تجاری اغلب چندین واحد عملیاتی را احاطه می‌کند و داده‌ها و منابع گسترده‌ای را از این واحدها مطالبه می‌کند. در این رابطه، وجود رهبر برای اطمینان از مدیریت دقیق چالش‌های سازمانی که در طول دوره پروژه بوجود می‌آیند ضروری است. برخلاف پروژه‌های سیستم عملیاتی، چنین چالش‌هایی شامل به رسمیت شناختن ارزش استراتژیک داده‌هایشان و انعکاس اینکه چطور داده‌های آن‌ها با داده‌های سیستم‌های تراکنشی دیگر تعامل می‌کنند بسیار مهم است.

بنابراین رهبر باید از همکاری میان واحدهای سازمان و تیم پروژه هوش تجاری اطمینان حاصل کند.

 اگرچه پروژه‌های هوش تجاری اساسا متفاوت از پروژه‌های OLTP است [22,10] سازمان ها در اکثر پروژه‌های پیاده سازی سیستم‌های اطلاعاتی تمایل دارند به کارکنان حوزه فناوری اطلاعاتشان به عنوان مسئول تکیه کنند. تیم پروژه باید قوی و پایدار باشد که بتوانند با نیازهای در حال ظهور و در حال تغییر سازگار شود و برای این کار به تیمی با اعضای شایسته نیاز است.

مصاحبه شوندگان بر این عقیده بودند که ترکیب تیم هوش تجاری باید از بهترین متخصصین حوزه کسب و کار و فنی تشکیل شود. نوآوری هوش تجاری اساسا پروژه‌ای مبتنی بر کسب و کار است و برای تصمیم گیری های استراتژیک ضروری است.

ازدیدگاه فنی، پروژه هوش تجاری قابل مقایسه با پروژه یکپارچه سازی سیستم‌ها است و نیاز به مشارکت فعال متخصصان فنی سازمان دارد[19]. بطور نمونه تیم پروژه با سیستم عامل‌های متنوع، پایگاه داده‌های متفاوت، رابط‌های چندگانه، اتصال به سیستم های قدیمی، مجموعه ای از ابزار، و غیره سر و کار دارد همه این کارها به افرادی با مهارت‌های مختلف نیاز دارد. بنابراین کلید موفقیت، ترکیب مناسبی از متخصصان فنی و کسب و کار است.

 بیشتر متخصصان توصیه می‌کنند برای فعالیت‌هایی مانند استاندارد سازی داده، تحلیل پیش نیازها، تحلیل کیفیت و صحت اطلاعات، تیم هوش تجاری شامل متخصصان حوزه کسب و کار باشند. این موضوع باعث می‌شود طراحی سیستم توسط کسب و کار هدایت شود و تضمین می‌کند که نیازهای هوش تجاری، به خوبی هدایت کننده معماری منطقی داده‌ها باشد.

 

رویکرد توسعه تکرارشونده و مبتنی بر کسب و کار

برنامه ریزی و هدف گذاری پروژه مبتنی بر کسب و کار اجازه می دهد که تیم هوش تجاری به بهترین فرصت‌ها برای بهبود تمرکز کنند. هدف گذاری به انتخاب پارامترهای روشن کمک می کند و درک مشترکی از اینکه چه چیزی در محدوده است و چه چیزی باید حذف شود را در میان همه ذینفعان کسب و کار ایجاد می‌کند. [1]

"موفقیت نود درصد پروژه ماقبل از روز اول تعیین می شود. این موفقیت بر پایه داشتن محدوده‌ای روشن و مشخص، داشتن انتظارات و جدول زمانی واقع گرایانه و بودجه مناسب از پیش مشخص شده، است"

 هدف گذاری و برنامه ریزی، انعطاف پذیری و سازگاری با شرایط متغیر در چارچوب زمانی را تسهیل می‌کند. علاوه بر آن، هدف گذاری مناسب، تیم پروژه را قادر می سازد که برنقاط عطف ضروری و مسائل مربوط تمرکز کنند و همزمان محافظی برای جلوگیری از قرار گرفتن در وقایع غیرضروری است.

 "محدوده باید کنترل شود زیرا "جهش محدوده" می تواند باعث نرسیدن به هدف شود. این بدان معنی نیست که شما نمی توانید عمل یا فرایند کنترل تغییر در مکان داشته باشید بلکه شکلی از کنترل است. پروژه های زیادی بخاطر جهش محدوده، توزیعشان به خطا رفته و هزینه داشته‌اند."

 متخصصان زیادی توصیه می‌کنند که با تغییرات و تحولات کوچک شروع کنید و سپس توزیع افزایشی (تدریجی) که رویکردی بنام "تعاملی" ست را اتخاذ کنیم. تلاشهایی که برای تغییرات در مقیاس بزرگ انجام می‌شود همیشه مملو از ریسک‌های بزرگتری با توجه به متغیرهای اساسی که بطور همزمان اداره می شوند، است. [1] علاوه بر آن کسب و کارهای مدرن خیلی سریع تغییر می‌کنند و همیشه بدنبال شناسایی تاثیرات فوری تغییرات هستند. بنابراین رویکرد توزیع افزایشی احتیاط آمیزتر است و ابزارهایی برای تحویل در زمان کوتاه و گام‌های قابل اندازه گیری را فراهم می کند. علاوه بر آن رویکرد توزیع افزایشی اجازه ساخت راه حلی بلند مدت در تضاد با اصطلاح کوتاه مدت را می دهد [1, 4].

 " رویکرد توزیع افزایشی ریسک را مدیریت می‌کند، نتایج ملموس قابل مشاهده برای مشتری را فراهم می کند توانایی بدست آوردن مالکیت مشتری را بهبود می بخشد، انتقال دانش را تسهیل می‌کند و راه حلی بلند مدت منظور می‌کند."

 بنابراین محدوده ابتکار هوش تجاری باید در چنان مسیری انتخاب شود که در زمانی معقول سیستمی کامل برای بخش خاصی از کسب و کار بتواند تحویل داده شود به جای راه حل "بزرگ و عظیم و کامل" در زمان دیرتر. هنگامیکه کاربران کار با راه حل هوش تجاری را آغاز کردند بطور کامل متوجه پتانسیل گزارش دهی و امکانات تجزیه و تحلیل می شوند بعد از آن سیستم هوش تجاری اولیه با رویکرد تکاملی و تکرارشونده افزایش و توسعه می یابد.

 امکان پیاده سازی یکدفعه تمام سیستم هوش تجاری امکانپذیر نیست در حالی که کاربران می‌خواهند بخش‌های کلیدی را مشاهده کنند. به منظور راضی نگه داشتن ذینفعان و نمایش تعداد کمی از گزارشات کلیدی باید انبار داده را برای چند حوزه کلیدی بر پا نمود. سپس وقتی اولین نسخه انجام شد و تعدادی بازخورد بدست آمد، می‌توانید روی انبار داده حوزه های دیگر کار کنید و به مرور زمان، سایر حوزه‌ها را توسعه دهید.

بنابراین، رویکرد توزیع افزایشی (تدریجی) به سازمان اجازه می دهد که روی مسائل حیاتی تمرکز کند و تیم‌ها را برای اثبات عملی و سازنده بودن پیاده سازی سیستم برای سازمان تایید کند.

مدیریت تغییر کاربر گرا

درک بهتر کاربر می تواند منجر به انتقال بهتر نیازهایشان شود که به نوبه خود به اطمینان از معرفی موفقیت آمیز سیستم کمک می‌کند و می تواند در پاسخگویی به مطالبات و انتظارات مختلف کاربران نهایی کمک کند. بی شک، کاربران نیازهایشان را بهتر از یک معمار یا توسعه دهنده‌ای که فاقد تجربه مستقیم است، می‌شناسند.

 " کاربران باید شریک مهمی در ساخت و تحویل سیستم باشند. بدون ورودی مداومشان، نمی توانیم سیستم درستی ارائه دهیم.

بنابراین نمی‌توان برای دستیابی به نیازهای کاربران، تیم پروژه ای را طراحی و سیستم هوش تجاری‌ را پیاده سازی کرد اما آن‌ها را مشارکت نداد."

 آشکار است که کاربران کلیدی باید در سراسر چرخه پیاده سازی درگیر باشند چون آنها می توانند ورودی‌های ارزشمندی را ارائه دهند که در غیر اینصورت تیم هوش تجاری ممکن است نادیده بگیرد. ابعاد داده‌ها، قوانین کسب و کار، متا دیتا و چارچوب داده که لازم است توسط کاربران کسب و کار در سیستم ثبت شوند و در مقابل اقلام قابل تحویل، تائید شوند. [29] در نتیجه، پشتیبانی کاربر بطور مداوم در پاسخ به نیازمندیهای کسب و کار مکمل کاربردهای هوش تجاری و سبب تکامل است. [10]

 

بعد تکنیکی

چارچوب فنی انعطاف پذیر و مقیاس پذیر، مبتنی بر کسب و کار

چارچوب فنی سیستم هوش تجاری باید قادر به تطبیق مقیاس پذیری و انعطاف پذیری ملزومات در راستای نیازهای پویای کسب و کار باشد. طراحی زیرساخت انعطاف پذیر و مقیاس پذیر اجازه توسعه آسان سیستم برای هم راستایی با نیازهای اطلاعاتی در حال تحول را می دهد[21]. بنابراین دید استراتژیک مستتر در طراحی چارچوب سیستم مقیاس پذیر می تواند شامل منابع داده اضافی، ویژگی‌ها و ابعاد برای تحلیلهای مبتنی بر واقعیت شود و میتواند داده‌های اضافی تامین کنندگان، پیمانکاران، نهادهای نظارتی و معیارهای صنعتی را ترکیب کند. در نتیجه اجازه ساخت راه حل بلند مدت برای پاسخگویی به نیازهای فزاینده کسب و کار را می‌دهد.

 "مقیاس پذیری همیشه برای من نگران گننده است. به نظر میرسد بیشترین برنامه ها و سیستم های هوش تجاری همیشه بیشتر از حد مورد انتظار بزرگ می‌شوند یا توانشان بیشتر از حد پیش بینی شده است. اگر طراحی قابل تنظیم یا انعطاف پذیر نباشد ایجاد تغییر برای سازگاری با افزایش مقیاس مشکل است."

 در واقع زیر سازی در هوش تجاری برای همه کارها اساسی است و تا لایه فنی برای تمام محیط هوش تجاری شامل استقرار سخت افزار و نرم افزار جدید، قابلیت همکاری میان سیستم‌های قدیمی و محیط هوش تجاری جدید در یک شبکه، پایگاه داده، زیرسیستم مدیریت و غیره می شود. [19] ایجاد زیرساخت فنی برای راه حل هوش تجاری اولیه همیشه زمان بر است. [29]اما با انتخاب درست اجزای نرم افزار و سخت افزار انعطاف پذیر و قابل تنظیم، تلاش برای چرخه بعدی می تواند به حداقل برسد. در نتیجه سیستم می‌تواند خود را با ملزومات در حال ظهور و همیشه در حال تغییر کسب و کار تطبیق دهد.

 

یکپارچگی و کیفیت داده‌های پایدار

کیفیت داده نقشی حیاتی در استقرار موفق سیستم هوش تجاری ایفا می‌کند. هدف اولیه سیستم هوش تجاری یکپارچه کردن سیلوهای داده برای تجزیه و تحلیل پیشرفته است تا بهبود فرآیند تصمیم گیری. اغلب داده‌های مرتبط زیادی در پشت سیستم جمع می‌شوند اما تا زمان استفاده در سیستم هوش تجاری کشف نمی شوند. [31] بنابراین کیفیت داده در منبع، بر روی کیفیت گزارشات مدیریت اثر میگذارد که آن هم به نوبه خود نتایج تصمیمات را تحت تاثیر قرار می دهد [9]. اطلاعات شرکت تنها زمانی میتوانند بطور کامل و کارا در عرصه تجاری گسترده مورد استفاده قرار بگیرند که یکپارچگی و کیفیت آنها تائید شود.

و باید توجه داشت که بدون داده های با کیفیت، هوش تجاری هوشمند نیست

 

پی نوشت: این مقاله ترجمه‌ای از تحقیقی است که توسط WILLIAM YEOH و ANDY KORONIOS در دانشگاه استرالیا انجام گرفته.


منبع


با تشکر فراوان از خانم باقرزاده


[1] Ang, J. & Teo, T. S. H. “Management Issues in Data

Warehousing: Insights from the Housing and Development

Board,” Journal of Decision Support Systems, 29(1), 2000,

11-20.

[2] Ariyachandra, T. & Watson, H. “Which Data Warehouse

Architecture Is Most Successful?” Business Intelligence

Journal, 11(1), 2006.

[3] Arnott, D. “Decision Support Systems Evolution:

Framework, Case Study and Research Agenda,” European

Journal of Information Systems, 13(4), 2004, 247-259.

[4] Arnott, D. & Pervan, G. “A Critical Analysis of Decision

Support Systems Research,” Journal of Information Technology,

20(2), 2005, 67-87.

[5] Bose, R. “Advanced Analytics: Opportunities and

Challenges,” Industrial Management & Data Systems,

109(2), 2009, 155-172.

[7] Delone, W., & McLean, E. “Information Systems Success:

The Quest for the Dependent Variable,” Journal of

Information System Research, 3(1), 1992, 60-95.

[8] Delone, W., & McLean, E. “The DeLone and McLean Model

of Information Systems Success: A Ten-Year Update,”

Journal of Management Information Systems, 19(4), 2003,

9-30.

[10] Fuchs, G. “The Vital BI Maintenance Process”, in Business

Intelligence Implementation: Issues and Perspectives,” In

B. Sujatha (Ed), ICFAI University Press, Hyderabad, 2006,

116-123.

[11] Gartner Research, “Gartner EXP Worldwide Survey of

1,500 CIOs Shows 85 Percent of CIOs Expect ‘Significant

Change’ Over Next Three Years,” 2008. Retrieved 21 Feb

2009, from http://www.gartner.com/it/page.jsp?id=587309

[12] Gartner Research, “Gartner EXP Worldwide Survey of

More than 1,500 CIOs Shows IT Spending to Be Flat in

2009”, 2009. Retrieved 21 Feb 2009, from http://www.

gartner.com/it/page.jsp?id=855612

[13] Hwang, M. & Xu, H. “A Structural Model of Data

Warehousing Success,” Journal of Computer Information

Systems, Fall 2008, 48-56

[19] Moss, L. & Atre, S. Business Intelligence Roadmap: The

Complete Lifecycle for Decision-Support Applications.

Addison-Wesley, Boston, MA. 2003.

[21] Olszak, C & Ziemba, E. “Approach to Building and

Implementing Business Intelligence Systems,” Interdisciplinary

Journal of Information, Knowledge, and Management,

2, 2007, 135-148.

[22] Reinschmidt, J. & Francoise, A. Business Intelligence

Certification Guide, IBM International Technical Support

Organization, San Jose, CA, 2000.

[25] Turban, E., Sharda, R., Aronson, J. & King, D. Business

Intelligence, Prentice Hall, New Jersey, 2007.

[27] Wang, H. & Wang S. “A Knowledge Management Approach

to Data Mining Process for Business Intelligence,” Industrial

Management & Data Systems, 108(5), 2008, 622-634.

[28] Watson, H., Abraham, D., Chen, D. “Data Warehousing

ROI: Justifying and Assessing a Data Warehouse,” Business

Intelligence Journal, 2004, 6-17.

[30] Watson, H., Annino, D. A., Wixom, B. H. “Current Practices

in Data Warehousing,” Journal of Information Systems

Management, 18(1), 2001, 1-9.

انبار داده‌های AdventureWorks

کتاب‌های آموزشی ماکروسافت در حوزه Business Intelligence، برای طرح مثا‌ل‌های خود از پایگاه‌ داده‌های AdventureWorks استفاده می‌کند. در واقع AdventureWorks نام سازمانی است که اطلاعات آن در یک انبار داده با همان نام گردآوری شده است.  در انبار داده‌های AdventureWorks جداول و Viewهایی برای استفاده در پروژه‌های مختلف BI ایجاد شده است. ممکن است در برخی از مثال‌ها از انبار داده‌ی AdventureWorks استفاده کنم که لازم است پیشتر آن را نصب کرده باشید.

جهت اضافه کردن پایگاه داده‌های AdventureWorks به SQL Server مراحل زیر را انجام دهید.

برای دریافت فایل مورد نظر به اینجا مراجعه کنید.  

فایل دانلود شده را از حالت فشرده خارج کنید و AdventureWorks2008R2_SR1 را اجرا نمایید.

بر روی Setup کلیک کنید. 

 

  

در صفحه SQL Server 2008R2 Database Installer چک باکس I accept the license terms را انتخاب و Next را کلیک کنید.  

 

 

 مطابق شکل زیر، بر روی Install کلیک کنید.   

  

اگر در زمان نصب نرم افزار، آدرس محل نصب را تغییر دادید، باید در این قسمت نیز از همان آدرس استفاده کنید.

پس از پایان نصب بر روی Finish کلیک کنید. 

 

 

همان طور که در شکل زیر می بینید، انبار داده AdventureWorks2008R2 به همراه چند پایگاه داده‌ی دیگر بهSQL Server 2008  اضافه شده است.   

مراحل و نحوه بارگذاری داده ها در انبار داده

پس از شناخت و تحلیل سازمان، اولین قدم برای ساخت یک پروژه‌ی هوش تجاری ایجاد انبار داده است. بر اساس نیاز باید اطلاعات را از منابع مختلف استخراج و جمع آوری(Extract)، پالایش (Transform) و در یک پایگاه داده ذخیره (Load) کنیم. به عملیات استخراج، پالایش و بارگذاری، ETL گفته می‌شود. امروزه ابزارهای زیادی برای انجام فرآیند ETL وجود دارد که تا حدود زیادی دقت و سرعت انجام این عملیات را بالا برده است. هر یک از این مراحل جزئیاتی دارند که در ادامه به شرح آن می‌پردازم.


۱- استخراج داده‌ها از پایگاه‌های داده به یک مخزن واحد

شناخت منابع داده‌های سازمان و استخراج داده‌های ارزشمند از آن‌ها یکی از اصلی ترین مراحل ایجاد انبار داده است. داده‌هایی که بایست در قالب انبار گرد هم آیند غالباً به صورت پراکنده‌ تولید شده‌اند. برای مثال در یک فروشگاه زنجیره‌ای داده‌ها از طریق کامپیوترهای مراکز خرید مختلف، دستگاه‌های خرید اتوماتیک (مثل دستگاه‌های خرید نوشابه یا روزنامه) و نرم افزارهای انبارداری و حسابداری، به دست می‌آیند.  انبار داده برای انجام وظیفه خود که همان تحلیل داده‌ها است باید همه این داده‌ها را با هر قالبی که تولید می‌شوند به طور مرتب و دقیق دریافت نماید. استخراج داده‌ها در یک محیط واسط که کم و بیش شبیه انبار داده‌ها است صورت می‌گیرد.


۲- پالایش داده‌ها

داده‌های استخراج شده را باید بررسی نماییم و در صورت نیاز تغییراتی در آن‌ها ایجاد کنیم. دلیل این کار، استخراج اطلاعات از پایگاه‌ داده‌های مختلف و برطرف نمودن نیازهای سازمان است. معمولا تمامی مراحل پالایش داده‌ها در محیط واسط انجام می‌گیرد اما گاهی برخی از مراحل پالایش در هنگام بارگذاری در انبار داده انجام می‌شود.

در پالایش داده‌ها مراحل زیر انجام می‌شود.


پاک‌سازی داده‌ها (Data Cleaner): ممکن است در دنیای امروز میلیون‌ها مجموعه داده وجود داشته باشد، اما به راستی تمام این مجموعه از داده‌ها بدون اشکال هستند؟ آیا تمامی مقادیر فیلدهای هر رکورد  پر شده است  و یا  مقادیر داخل فیلدها داده‌های صحیح دارند؟ اگر داده‌ها  از منابع یکسان مثل فایل‌ها  یا پایگاه‌های داده‌ای گرفته شوند خطاهایی از قبیل اشتباهات تایپی، داده‌های نادرست و فیلدهای بدون مقدار را خواهیم داشت و چنانچه داده‌ها  از منابع مختلف مثل پایگاه داده‌های مختلف یا سیستم اطلاعاتی مبتنی بر وب گرفته شوند با توجه به نمایش‌های دادهای مختلف خطاها بیشتر بوده و پاک‌سازی داده‌ها  اهمیت بیشتری پیدا خواهد کرد.

با اندکی توجه به مجموعه‌ای از داده‌ها متوجه خواهیم شد که از این قبیل اشکالات در بسیاری از آن‌ها وجود دارد. مسلماً هدف از گردآوری آن‌ها،  تحلیل و بررسی و استفاده از داده‌ها برای تصمیم گیری‌ها است. بنابراین وجود داده‌های ناقص یا ناصحیح باعث می‌شود که تصمیم‌ها یا تحلیل‌های ما هم غلط باشند. به پروسه تکراری که با کشف خطا و تصحیح آن‌ها آغاز و با ارائه الگوها به اتمام می‌رسد، پاک‌سازی داده‌ها گفته می‌شود.

یکپارچه‌سازی (Integration)این فاز شامل ترکیب داده­های دریافتی از منابع اطلاعاتی مختلف، استفاده از متاداده‌ها برای شناسایی، حذف افزونگی داده­ها، تشخیص و رفع برخوردهای داده­ای می­باشد.

یکپارچه سازی داده­ها از سه فاز کلی تشکیل شده است:

شناسایی فیلدهای یکسان: فیلدهای یکسان که در جدول‌های مختلف دارای نام‌های مختلف میباشند.

شناسایی افزونگی‌های موجود در داده‌های ورودی: داده­های ورودی گاهی دارای افزونگی هستند. مثلاً بخشی از رکورد در جدول دیگری وجود دارد.

مشخص کردن برخورد‌های داده­ای: مثالی از برخوردهای داده­ای، یکسان نبودن واحدهای نمایش داده­ای است. مثلاً فیلد وزن در یک جدول بر حسب کیلوگرم و در جدولی دیگر بر حسب گرم ذخیره شده است.

تبدیل داده‌ها (Data Transformation): در مجموعه داده های بزرگ، به نمونه هایی که از رفتار کلی مدل داده ای تبعیت نمی‌کنند و بطور کلی متفاوت یا ناهماهنگ با مجموعه باقیانده داده ها هستند، داده های نامنطبق گفته می‌شود.

داده‌های نامنطبق می‌توانند توسط خطای اندازه گیری ایجاد شونده یا نتیجه نوع داده ای درونی باشند. برای مثال اگر سن فردی در پایگاه داده 1- باشد، مقدار فوق قطعا غلط است و با یک مقدار پیش فرض فیلد "سن ثبت نشده" می تواند در برنامه مشخص گردد.

کاهش داده‌ها (Reduction): در این مرحله، عملیات کاهش داده­ها انجام می­گیرد که شامل تکنیکهایی برای نمایش کمینه اطلاعات موجود است.

این فاز از سه بخش  تشکیل می­شود:


کاهش دامنه و بعد: فیلدهای نامربوط، نامناسب و تکراری حذف می­شوند. برای تشخیص فیلدهای اضافی، روش‌های آماری و تجربی وجود دارند؛ یعنی با اعمال الگوریتمهای آماری و یا تجربی بر روی داده‌های موجود در یک بازه زمانی مشخص، به این نتیجه می­رسیم که فیلد یا فیلدهای خاصی، کاربردی در انبار داده­ نداشته و آن‌ها را حذف می­کنیم.

فشرده سازی داده­ها: از تکنیکهای فشرده­سازی برای کاهش اندازه داده­ها استفاده می­شود.

کد کردن داده­ها: داده­ها در صورت امکان با پارامترها و اطلاعات کوچک‌تر جایگزین می­شوند.


٣- بارگذاری داده های پالایش شده

پس از انجام مراحل استخراج و پالایش نوبت به بارگذاری داده‌ها در انبار داده‌ها است. معمولا در این مرحله فقط عمل بارگذاری انجام می‌گیرد اما گاهی ممکن است انجام یکی از مراحل پالایش در هنگام بارگذاری صورت گیرد. درانبار داده فیلدها در جاهای مختلفی تکرار می شوند و روابط بین جداول کمتر به چشم می خورند. علت آن هم افزایش سرعت پردازش اطلاعات هنگام گزارشات و عملیات آماری می‌باشد.

حال انبار داده‌ها با مقادیر اولیه ساخته شده است، اما این پایان کار نیست! هر روزه داده‌های بیشتر و جدیدی به پایگاه‌ داده‌ها اضافه می‌شود و باید شرایطی را فراهم کنیم تا این داده‌ها به صورت خودکار و بدون دخالت کاربر، پس از استخراج و پالایش در انبار داده بارگذاری شود.

پس از بارگذاری داده‌ها نوبت به استفاده از اطلاعات ذخیره شده در انبار داده‌ها است. این کار توسط ابزارهای گزارش گیری (Reporting Services)، داده‌کاوی و OLAP انجام می‌شود.



مرکز دادهها یا Data Mart: انبار داده ها حجم عظیمی از اطلاعات را در واحد های منطقی کوچکتری به نام مرکز داده نگهداری می کند مرکز داده ها نمونه های کوچکی از انبارداده ها بوده و همانند آنها حاوی کپی هایی ثابت از داده هایی هستند که در موارد خاص استفاده می شوند. 


منبع عکس

تفاوت انبار داده و پایگاه داده

وظیفه اصلی سیستم‌های پایگاه داده، پشتیبانی از تراکنش‌های آن‌لاین و پردازش پرس و جو است. این سیستم‌ها، سیستم پردازش تراکنش آن‌لاین (OLTP) نامیده می‌شوند و بیشتر عملیات روزمره یک سازمان را پوشش می‌‌دهند. از سوی دیگر انبار داده که به عنوان نوع خاصی از پایگاه های داده معرفی می شود به کاربران یا knowledge workers خدماتی در نقش تحلیل‌گر داده و تصمیم گیرنده ارائه می‌دهند. چنین سیستمهایی قادر هستند داده‌ها را در قالبهای گوناگون برای هماهنگی با نیازهای مختلف کاربران، سازماندهی کرده و ارائه دهند. این سیستم‌ها با نام سیستم‌های پردازش تحلیلی آن‌لاین نیز  (OLAP) شناخته‌ می‌شوند.

از لحاظ مدل‌های داده‌ای؛ پایگاه‌های داده برای مدل OLTP بهینه سازی شده که بر اساس مدل داده رابطه‌ای امکان پردازش تعداد زیادی تراکنش همروند، که اغلب حاوی رکورد‌های اندکی هستند را دارد. اما در انبارهای داده که برای پردازش تحلیلی آن‌لاین طراحی شده‌اند امکان پردازش تعداد کمی‌ پرس و جو پیچیده بر روی تعداد بسیار زیادی رکورد داده فراهم می‌شود. سرورهای OLAP هم می‌توانند رابطه‌ای  باشند ( ROLAP ) وهم می‌توانند چند‌بعدی باشند (MOLAP ).

از لحاظ کاربران؛ کاربران پایگاه داده کارمندان دفتری و مسئولان می باشند در حالی که کاربران انبار داده مدیران و تصمیم‌گیرنده‌ها هستند.

از لحاظ عملیات قابل اجرا بر روی آن‌ها؛ عملیاتی که بر روی پایگاه دادها صورت می‌‌گیرد، عموماً شامل عملیات ‌به هنگام سازی است در حالی که عمل خواندن از انبار، عمده عملیات قابل اجرا بر روی انبار داده را تشکیل می‌دهد.

از لحاظ مقدار داده‌ها؛ مقدار داده‌های یک پایگاه داده در حدود چند مگابایت تا چند گیگابایت است در حالی که این مقدار در انبار داده در حدود چند گیگابایت تا چند ترابایت است.

انبار داده یا Data Warehouse چیست؟

برای استفاده از ابزارهای هوشمندی کسب و کار به انبارداده نیاز داریم. انبار داده، داده‌ها را از یک یا چند منبع جمع آوری کرده و آن‌ها را به گروه‌ها‌ی اطلاعاتی تبدیل می‌کند، سپس داده‌ها را به همراه اطلاعات زمان و تاریخ برای پشتیبانی بهتر از تصمیم گیری‌ها  ذخیره می‌کند. به طور کلی اطلاعات توسط ETL (در یک پست جداگانه به شرح ETL خواهم پرداخت) از سیستم‌های عملیاتی متعدد جمع آوری، پاک‌سازی و به یک بانک‌اطلاعاتی انتقال داده می‌شود. این بانک اطلاعاتی اطلاعات حاصل را برای استفاده از ابزارهای هوش تجاری جهت تحلیل و گزارش گیری کاربران نهایی فراهم می‌کند و در نتیجه به کاربران اجازه تحلیل‌ و ایجاد پرس و جوهای گوناگون بر روی داده‌ها را می‌دهد که پیش از این هیچ ارتباطی با هم نداشتند.

این اطلاعات در جهت آنالیز کردن داده های موجود در سیستم های عملیاتی مورد استفاده قرار می گیرد. فلسفه بکارگیری انبارداده در سازمان این است که اطلاعات مورد نیاز مدیران از درون داده های سیستم های عملیاتی موجود استخراج گردد. معمولا انبار داده به دلیل وجود حجم انبوهی از داده ها، کندتر از سیستم های عملیاتی است و از طرفی محیطی جهت تولید گزارشات تحلیلی و آماری برای مدیران و تصمیم گیرندگان سازمان‌ها فراهم می‌کند.