هوش تجاری (Business Intelligence)

هوش تجاری (Business Intelligence)

به اشتراک بگذاریم برای یادگیری، یاد بگیریم برای به اشتراک گذاری
هوش تجاری (Business Intelligence)

هوش تجاری (Business Intelligence)

به اشتراک بگذاریم برای یادگیری، یاد بگیریم برای به اشتراک گذاری

داده کاوی و OLAP - مکمل یا متفاوت با هم؟

تکنیکهای بسیاری جهت جمع آوری ، پالایش و آنالیز داده ها نظیر OLAP و  Data Mining با هدف استخراج اطلاعات از رکوردهای عملیاتی سازمان و نظم دهی آن به منظور انجام تحلیل های مختلف وجود دارد.

یکی از متداول‌ترین سوالات در حوزه پردازش داده‌ها به صورت حرفه‌ای در مورد تفاوت داده کاوی و OLAP می‌باشد.  این دو ابزار در عین حال که تفاوت‌هایی با هم دارند مکمل یکدیگر نیز می‌باشند.


کاربر در مورد یک رابطه و تائید آن با مجموعه‌ای از  پرس و جوها در مقابل داده‌ها، به شکل یک فرضیه روبرو است. به عنوان مثال ممکن است تحلیلگر بخواهد تا عواملی که سبب ناتوانی در بازپرداخت بدهی وام منجر می‌گردد را تجزیه و تحلیل نماید.

در تجزیه و تحلیل پایگاه داده OLAP ابتدا ممکن است این گونه فرض شود که افرادی که در اعتبارات مالی درآمد پایین و ریسک بالا دارند، نتوانند بدهی خود را پرداخت کنند و فرضیه افراد کم درآمد و کم اعتبار تائید (و یا رد) شود.

اگر فرضیه توسط داده‌ها تصدیق نشد تحلیلگر ممکن است به بدهی بالا به عنوان عامل منجر به ریسک نگاه کند. اگر این مطلب را داده‌ها نیز تایید نکنند او ممکن است بدهی و درآمد را با هم به عنوان بهترین نمایانگر ریسک اعتبار مالی بد در نظر بگیرد.


به عبارت دیگر OLAP یک تجزیه و تحلیلی از مجموعه‌ای از فرضیه‌ها تولید کرده و پارامترها و ارتباطات را برای استفاده به سمت کوئری های پایگاه داده برای تائید یا رد آن‌ها ارسال می‌کند. تجزیه و تحلیل‌های OLAP برای پردازش‌های استنتاجی یک ضرورت است.


داده کاوی با OLAP تفاوت دارد زیرا الگوهای فرضیه‌ها را سریع‌تر تائید می‌کند، با استفاده از همان داده‌ها به کشف الگوهای همانند می‌پردازد و همچنین برای پردازش‌های استنتاجی ضروری می‌باشد. برای مثال فرض کنید شخصی قصد داشته باشد تا فاکتورهای همراه با ریسک جهت وام گرفتن را با استفاده از داده کاوی تجزیه و تحلیل و شناسایی کند. ممکن است ابزارهای داده کاوی اشخاص با بدهی بالا، درآمد پایین و اعتبار مالی بد را کشف کنند. این نوع تجزیه و تحلیل ممکن است از موارد تاثیرگذار دیگری چشم پوشی کند. بعنوان مثال سن می تواند یک عامل تعیین کننده در بازپرداخت وام باشد.

 اینجا جایی است که داده کاوی و OLAP  می‌توانند یکدیگر را کامل کنند. قبل از کار بر روی الگو و تجزیه و تحلیل بر روی اطلاعات، نیاز به دانستن پیامدهای مالی و همچنین خواستار کشف الگوهایی برای کنترل اعتبار کافی اشخاص میباشیم. تکنولوژی OLAP می‌تواند به  این قسمت از سوال پاسخ دهد. در OLAP با استفاده از MDX و با دقت و تمرکز خود بر روی مقادیر مهم می‌تواند استثناها را شناسایی و یا تعاملات را کشف کند.